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Abstract— With the explosion of XML-based online docu-
ments, the task of knowledge discovery from the web becomes
highly significant. As an appropriate machinery, classification
allows to categorize documents to facilitate that task. A classifi-
cation approach is introduced in this paper. It is based on the
k-nearest neighborhood algorithm that relies on an edit distance
measure. The originality of the work lies in combining both the
content and the structure of XML documents to compute the edit
distance. The approach is empirically evaluated using real-world
XML collections.

I. INTRODUCTION

The eXtensible Markup Language (XML) has recently
emerged as a standard for developing many web applications
dealing with document storage and retrieval, e.g., digital
libraries. XML was mainly developed to achieve an enriched
representation of documents and more retrieval flexibility
when searching information. Systems concerned with such
web applications are mainly augmented traditional information
retrieval systems. In contrast to traditional retrieval systems
that deal with flat documents, XML retrieval systems take the
logical structure of documents into account. In addition to the
raw text (pure content), this structure is considered as a further
valuable information source for document representation. It
serves to refine the search process and to improve the quality
of the retrieval results. Indeed, each document is represented
as a tree of XML nodes, where each node is associated with
a label and a content (called XML component). The goal
of retrieval systems is, therefore, to retrieve only relevant
components instead of the whole documents in response to
the user queries. As a matter of consequence, the retrieval
precision gets better.

As far as we are concerned with document classification, it
is of high importance to exploit the structure of documents in
order to devise a classification machinery. This latter is a very
significant mechanism in the context of XML retrieval due to
two reasons: (1) a user query can be satisfied by means of
different possible answers; closely associated documents tend
to be relevant to the same requests, and (2) retrieval systems
and web mining tools are generally operational in the same
environment.

Classifying (and clustering) XML documents can be basi-
cally done in three ways: (1) using exclusively the textual
contents of documents as usually done in traditional text
categorization (and clustering) systems, (2) using exclusively
the structure of the XML documents, and (3) using both
the contents and the structure in a hybrid manner. In this

work we are interested in the latter approach. The aim is to
discover structural and content patterns (characteristics) shared
by XML documents of the same class. These patterns are
mainly expressed in terms of their tags (node labels), contents,
and inter-relationship.

To achieve this goal, we rely on the k-nearest neighborhood
algorithm. The algorithm, which strongly relies on a distance
measure, will be explained later. Since we are dealing with
XML documents represented in the form of a tree, it is
straightforward to adopt an edit distance to measure the
distance between document trees. The edit distance algorithm
computes the minimum cost to transform one document tree
into another, taking content and structure into account. In this
work, we show how the content can be embedded into the
edit distance. To the best of our knowledge, no previous work
has used edit distance taking the content of the XML tree into
account.

The rest of the paper is organized as follows. Section II
reviews related work on XML document classification. In
Sec. III, the edit distance algorithm is discussed with respect
to the content and structure before introducing a pure content-
based approach in Sec. IV. In Sec. V we briefly explain
the k-NN algorithm. Section VI discusses the experimental
evaluation of the approaches. Finally, Sec. VII concludes the
paper.

II. RELATED WORK

Although classification has been widely discussed in the
framework of traditional information retrieval (with flat doc-
uments), it has not yet gained much attention in the field of
structured documents. In the following, some of the research
work dedicated to XML document classification are briefly
summarized.

In [9], a classification approach is proposed that aims at
using the structure and the contents to classify XML docu-
ments. It relies on a generative Bayesian classifier. Here, the
generative model assumes that there are two types of belief,
structural and textual, which will be combined to get one single
evidence about a document assignment to classes:

P (doc|θ) = P (str|θ)× P (cont|str, θ)

where θ is a set of the model parameters, doc, str, and
cont designate document, structure, and content. The quan-
tities P (str|θ) and P (cont|str, θ) are computed via a belief
network as follows:



P (str|θ) =
#of tags∏

i=1

P (nodei|ancestor(nodei))

P (cont|str, θ) =
#of terms∏

i=1

P (termi|nodej , θ)

During the training phase, the parameters of the genera-
tive model are learned using the Expectation-Maximization
method. Unseen XML documents are assigned to the class
with the highest probability P (doc|classk).

In [3], a similar work to that described in [9] is developed.
The method, however, is less general, since the assumption
here is that all documents have the same structure across all
classes. According to this method, documents are broken down
into components, each of which contains either structured data
or non-structured textual data. Let dj , ck, sl, ti, designate
respectively a document j, a class k, a component l, and a
term i, the total probability of a document is

P (dj |ck) =
∏

sl∈dj

∏
ti∈sl

Psl
(ti|ck)fj(tis)

where f j(tis) indicates the word frequency of term i in the
sth component of the document j. The first product is over all
structural components sl that are present in the document dj .
The probability Psl

is obtained for each document component.
From this, it is clear that each document is represented by a
set of feature vectors, one for each component, so that word
frequency f j(tis) is maintained on a per-component basis.

In [22] a classifier, called XRules, is developed. This
classifier is structure oriented and aims at discovering a set
of structural rules that define the individual classes. Basically,
these rules, that reflect regular structural patterns of each class,
are learned during the training phase.

Most of the classification related work in the area of
structured data use tree edit distance to measure the distance
between associated graphs/trees. Basically, edit distance algo-
rithms compute the minimum cost to transform one document
tree into another. Each transformation (e.g., insert, delete,
alter) is associated with a certain cost. In addition to the
edit distance measure, other approaches apply other types
of distance measures. In the domain of XML classification,
authors tried to consider XML peculiarities such as tags,
parent-child relationships, root-leaf XPaths, arity of nodes,
etc. [24], [4]. Many algorithms have been proposed to compute
the edit distance between two trees [7], [8], [23], [18]. Most of
these algorithms use dynamic programming techniques as was
initially described in [13]. The aim is to find the cheapest se-
quence of transformations, called delta script or edit script [7].
The main difference of the various edit distance measures is
the set of allowed edit operations and their associated costs.
Early work [17] considered insert and delete of leaf nodes, and
node relabeling of all nodes. Extensions were then proposed to
allow insertion and deletion of nodes anywhere in the tree [19],
[20], [18].

In general the problem of finding the edit distance between
two trees is NP-hard [14], [2]. The work in [23] and [7]

try to find an efficient algorithm for the reduced problem
of ordered/binary trees, in which a left-to-right order among
siblings is significant. Chawathe et al. [7] first applied the same
edit operations and restrictions to detect changes in structured
documents. In subsequent works he extended the approach
to cover also move operations as basic edit operations [6]
and defined later on operations for copying and gluing of
subtrees [5].

Further edit distance methods dedicated to XML documents
can be found in the literature related to structural mapping,
e.g., change detection [8]. A good overview of existing algo-
rithms for change detection together with their properties is
given by Peters [16].

III. TREE MATCHING VIA EDIT DISTANCE

In this work, we will modify the algorithm proposed by
Nierman and Jagadish [15] which allows to compute the edit
distance between two trees using only the labels of the nodes.
Whilst this algorithm is structure-oriented, in our research
work, we are aiming at inducing a classifier that takes both the
structure and the content into account. We kept the dynamical
aspect of the algorithm, but we have improved it with respect
to two dimensions: (1) the algorithm will rely on simplified
edit operations; (2) the algorithm will take the content match
into account when computing the edit distance. Concretely,
we need to formulate a hybrid distance measure that combines
structure-based and content-based distances. Each of these are
described in the following sections.

A. Structure Matching

To formulate the distance, some definitions of the basic
concepts are introduced.

Definition 1 (Tree node): A node n of a tree T is associated
with a label λ(n), a content γ(n), a parent node p ∈ T , and a
set of children nodes ch(n). γ(n) is empty (null), if a node
does not have a content. The parent node p of the root node of
T is null. The children nodes of n are uniquely identified as
n1, n2, . . . , nk, where k is the degree of n denoted as deg(n).

Definition 2 (Ordered Tree): An ordered tree T is defined
as a rooted tree, where a left-to-right order among the children
nodes is significant. root(T ) denotes the root node of T . The
children of T are identified as the children of the root node of
T , denoted as T 1, T 2, . . . , T k (k = deg(root(T ))). Further,
|T | represents the total number of nodes in tree T .

Based on the aforementioned definitions, the allowed basic
edit operations can be described as follows:

Definition 3 (Insert operation): Given a tree T and a node
p ∈ T , a node n can be inserted into T as the ith child of the
node p using the operation ins(T,n,p,i). The cost function of
this operation is Cins(T, n, p).

Definition 4 (Delete operation): Given a tree T and a node
n ∈ T as the ith child of node p ∈ T , n can be removed
using the operation del(T,n,p,i). The cost function of deletion
is Cdel(T, n, p).

Definition 5 (Alter operation): Given two nodes n1 and n2

whose labels are λ(n1) and λ(n2). The label of n1 can be



replaced with the label of n2 using the operation alt(n1, n2)(≡
λ(n1) ← λ(n2)). The cost function of this operation is
Calt(n1, n2) defined as:

Calt(n1, n2) =

{
0 if λ(n1) = λ(n2)
β otherwise

(1)

Note that one can parameterize β so that altering a node
lying at level l in the document tree costs β(l). This seems
reasonable for taking the depth of the tree and semantic
closeness between tags into account.

Furthermore, if Cins(T, n, p) = Cdel(T, n, p), the edit
distance measure becomes symmetric. These operations are
applied on nodes that can be either leaf nodes or inner
nodes, where an inner node is the root of a subtree. The
cost of applying an operation on an inner node is recursively
computed by summing up the cost of its descendants. Hence,
the following definitions of the cumulative costs:

Definition 6 (Recursive delete): The cumulative cost of
deleting from the tree T a subtree, Sub, at node p is
CdelCum(T, Sub, p).

Definition 7 (Recursive insert): The cumulative cost of in-
serting into the tree T a subtree, Sub, at node p is
CinsCum(T, Sub, p)

Both costs CdelCum and CinsCum are bottom-up computed
as follows:

CdelCum(T, Sub, p) =
∑

CdelCum(T, Subj , root(Sub))
+Cdel(T, root(Sub), p)

CinsCum(T, Sub, p) = Cins(T, root(Sub), p)
+

∑
CinsCum(T, Subj , root(Sub))

(2)
In other words, at each node of the subtree Sub of the source

(resp. destination) tree T1 (resp. T2), the cost of the recursive
delete (resp. insert) operation is calculated by summing the
cost for deleting (resp. inserting) the single node root(Sub)
with the cumulative cost of deleting (resp. inserting) each of
its children Subj .

Having introduced some required variables, the edit distance
between two trees T1 and T2 is computed using Alg. 1.
Based on dynamic programming, this algorithm constructs
a deg(root(T1)) × deg(root(T2)) matrix of distance values
between the nodes of the two trees. First, the algorithm
compares the root nodes of T1 and T2. This corresponds to
an alter operation (line 4). Then, as seen in lines 6 and 9, the
algorithm computes the distance values of inserting or deleting
all nodes given the roots of two trees. These values serve to
trigger the dynamic computation of cumulative costs, where
each child of T1 is compared to each child of T2 recursively.
Indeed, a cell distMat[i][j] (i > 0 and j > 0) is assigned
a cost that is computed using the content of its neighboring
three cells:

• the content of the upper left neighbor, distMat[i−1][j−
1], is added to the distance between the subtrees rooted
at nodes ni and nj (i.e., T i

1 and T j
2 )) (line 14). This case

corresponds to a match between node ni and node nj .

Algorithm 1 dist(T1, T2)
1: int M = deg(root(T1))
2: int N = deg(root(T2))
3: int[][] distMat = new int[0..M][0..N]
4: distMat[0][0] = calt(root(T1), root(T2))
5: for j = 1 to N do
6: distMat[0][j] = distMat[0][j-1]

+ CinsCum(T2, T
j
2 , root(T2))

7: end for
8: for i = 1 to M do
9: distMat[i][0] = distMat[i-1][0]

+ CdelCum(T1, T
i
1 , root(T1))

10: end for
11: for i = 1 to M do
12: for j = 1 to N do
13: distMat[i][j] = min{
14: distMat[i-1][j-1] + dist(T i

1 , T j
2 ),

15: distMat[i][j-1] + CinsCum(T2, T
j
2 , root(T2)),

16: distMat[i-1][j] + CdelCum(T1, T
i
1 , root(T1))

17: }
18: end for
19: end for
20: return distMat[M][N]

• the content of the left neighbor, distMat[i][j − 1], is
added to the cost of inserting a subtree T j

2 to the source
tree (line 15). This case corresponds to an insertion of a
subtree rooted at node nj .

• the content of the upper neighbor, distMat[i − 1][j], is
added to the cost of removing a subtree T i

1 from the
source tree (line 16). This case corresponds to a removal
of an obsolete subtree rooted at node ni.

The minimum cost of these three alternatives is retained and
stored in distMat[i][j].

The original algorithm proposed by Nierman and Jagadish
outputs only the edit distance between two trees. There is no
way to reconstruct the optimal sequence of edit operations that
led to the obtained final edit distance. To overcome that, we
have to memorize all possible edit scripts that correspond to
the minimal distance between the two trees at hand. We define
an edit script as follows:

Definition 8 (Edit Script): An edit script δ is an ordered
sequence of edit operations that transform T1 into T2. In
general, there exist an infinite number δ1, δ2, . . . , δm of edit
scripts that correctly transform T1 into T2.

Definition 9 (Minimal Edit Script): Let δ1, δ2, . . . , δm be a
set of correct edit scripts transforming T1 in T2. A minimal
edit script is then defined as:

Mink=1..m{δk} = δi ⇐⇒ ∀δj | i 6= j,

dist(T1, T2)δi

≤ dist(T1, T2)δj (3)

where dist(T1, T2)δj

indicates the distance between T1 and
T2 obtained after applying the script δj . Note that there might
be more than one minimal edit script for a pair of trees.

B. Content Matching

The second type of distance required is the content-based
distance. To define it, we still rely on Alg. 1. However, the



previously used cost functions have to be redefined in order
to support the content match.

Let sim(γ(n1), γ(n2)) be an existing similarity function
that compares the contents of two nodes n1 and n2. Therefore,
this similarity can be any information matching function. Let
us assume that this similarity measure is normalized so that it
takes values in the unit interval [0,1] (where sim = 0 means
no match, sim = 1 indicates full match, and sim ∈]0, 1[
means partial match). Further, we define:

sim(null, null) = 1 (4)

sim(null, γ(n2)) = sim(γ(n1), null) = 0 (5)

Eq. 4 stipulates that the content-based similarity of two nodes
with empty content is total (i.e., complete match), while Eq. 5
stipulates that content-based similarity between a node with a
content and another node with empty content is 0.
The cost functions for inserting and deleting nodes with their
contents are defined as:

CinsCon(n) = 1− sim(null, γ(n)) = 1− 0 = 1 (6)

CdelCon(n) = 1− sim(γ(n), null) = 1− 0 = 1 (7)

The cost of altering the content, CaltCon (Eq. 8) is the sum
of the cost of changing the label Calt(n1, n2) (Eq. 1) and the
cost of altering the content which is expressed as:

ρ ∗ (1− sim(γ(n1), γ(n2)))

The cost CaltCon is given by:

caltCon(n1, n2) = calt(n1, n2) (8)
+ ρ ∗ (1− sim(γ(n1), γ(n2)))

The amount ρ is a cost factor that scales up the dissimilarity
of contents (since sim(γ(n1), γ(n2)) ∈ [0, 1] and calt(n1, n2)
can be larger than 1).

Furthermore, we can decide whether the alter operation is
cheaper than the delete and the insert operations combined
together. This can be tuned by a user-specified parameter,
α (0 ≤ α < 1). Precisely, if sim(γ(n1), γ(n2)) > α then
CaltCon < (CdelCon + CinsCon) (the alter is cheaper) and if
sim(γ(n1), γ(n2)) < α then CaltCon > (CdelCon +CinsCon)
(alter is more expensive); otherwise, alter has the same cost
as that of both delete and insert combined. From this, we can
determine the cost factor ρ as follows:

ρ ∗ (1− α) = CdelCon(n1) + CinsCon(n2)

leading to:

ρ =
CdelCon(n1) + CinsCon(n2)

(1− α)
(9)

Now, to take the content similarity into account
Calt(root(T1), root(T2)) in Alg. 1 (line 4) is substituted for
CaltCon(root(T1), root(T2)).

IV. TREE MATCHING VIA CONTENT MATRIX

While the focus has been so far on explicit consideration
of the structure to compare documents, in the following we
suggest a more content-oriented matching procedure that uses
the structure of documents only implicitly. More expressively,
the idea is to measure the similarity between documents using
only nodes with contents. Indeed, every node in the source
tree is compared to all nodes in the destination tree relying on
a content similarity matrix (denoted Content Matrix), where
only nodes containing content are taken into account.

A cell contSim[i][j] refers to the similarity degree (com-
puted by means of a measure) between the contents of the node
ni in the source tree and the node nj in the destination tree,
i.e., contSim[i][j] = sim(γ(ni), γ(nj)). One might define a
two-step process to perform the comparison: If the labels of the
nodes to be compared are the same, then the contents of these
nodes are compared. However, the first step of this comparison
can be optional at wish of the user via a flag variable ζ. If ζ
is set to true, the similarity of nodes with uneven labels is set
to 0.

Once the content similarity matrix, contSim[][], is filled,
the distance between the corresponding documents can be
computed using an algorithm that traverses that matrix in a
single pass. Basically, three edit operations: insert, delete, and
alter are applied. During the computation, these operations are
labeled either safe (certain) or unsafe (uncertain) as shown
in Alg. 2. Basically the algorithm proceeds mainly in two
step: (1) computing the similarities, and (2) marking of nodes
according to the edit operations as follows (item numbers
correspond to lines in Alg. 2):

14: If simMat[i][j] = 1, then nodes n1,i and n2,j are both
marked as safe match with no additional cost.

15: A source node, n1,i having no matching destination
nodes (simMat[i][j] = 0,∀j = 1 . . . |dest|) is marked
as safe delete. The cumulative cost is increased by the
weighted cost of safe delete.

16: A destination node, n2,j with no corresponding source
nodes (simMat[i][j] = 0,∀i = 1 . . . |source|) is
marked as safe insert. The cumulative cost is in-
creased by the weighted cost of safe insert.

17: An unmarked source node n1,i is marked as
unsafe match along with one unmarked destination
node n2,j , if n2,j is the first node (minimal index j)
fulfilling the condition simMat[i][j] ≥ α, where α is a
user-specified similarity threshold.

18: Any remaining unmarked source node, n1,i,
(simMat[i][j] < α,∀j = 1 . . . |dest|) are marked
as unsafe delete.

19: Any remaining unmarked destination node, n2,j ,
(simMat[i][j] < α,∀i = 1 . . . |source|) are marked as
unsafe insert.

As in the tree edit distance approach, each of the edit
operations is associated with a certain cost. In addition, the
labels [safe] and [unsafe] can be weighed. Since the distance
is inversely proportional to the similarity, the transformation



Algorithm 2 CM dist(T1, T2, ζ)
1: int M = |T1| /*only content nodes*/
2: int N = |T2| /*only content nodes*/
3: float[][] simMat = new float[0..M ][0..N ]
4: for i = 1 to M do
5: for j = 1 to N do
6: if ζ = true and λ(n1) 6= λ(n2) then
7: simMat[i][j] = 0
8: else
9: simMat[i][j] = sim(γ(n1,i), γ(n2,j))

10: end if
11: end for
12: end for
13:
14: mark safe match
15: mark safe delete
16: mark safe insert
17: mark unsafe match
18: mark unsafe delete
19: mark unsafe insert
20:
21: return

P
weighted costs (based on marks)

costs are calculated using the same formula applied in the
tree edit distance approach taking dist(n1,i, n2,j) = 1.0 −
contSim[i][j] into account. The final distance between the
documents is the sum of all of the (weighted) operations costs.
Clearly, the computation of the edit script is done in linear time
and space (since, there is no recursive computation).

V. OVERVIEW OF k-NN

The k-NN algorithm [10] is based on the assumption that the
classification of a sample is most similar to the classification of
other samples that are nearby in the space. Compared to other
learning methods such as probabilistic classifiers, k-NN does
not rely on prior probabilities. Moreover, despite its efficiency
problems, k-NN is known for its effectiveness [21]. The main
computation task is that related to sorting the training samples
in order to find the k-nearest neighbors of a given query. It is
then straightforward to apply k-NN algorithm for classifying
XML documents. To classify an unlabeled document (query)
using k-NN, the algorithm finds the k documents in the
reference samples (training documents) that are the closest
to it. The label shared by the majority of these k nearest
neighbors is assigned to the query.

VI. EVALUATION

In this section, we will study several aspects like: How
do different k values influence the classification? What is
the impact of training size on the classification performance?
How does content and structure matching perform compared
to structure only matching?

Clearly, the first aspect only aims at finding the most
reasonable value of k. Futhermore, all of these questions are
discussed using some real-world XML collections (MovieDB
-movie database-) which were proposed in INEX’05 [11].
Documents of these collections are assigned to 11 classes.
Basically, the XML collections are of two types:

• Structure-only (SO) collections: These contain only the
structure of the XML documents and include 4 collec-
tions: m-db-s-0, m-db-s-1, m-db-s-2, m-db-s-3, where the
last 3 collections are noisy versions of the first one.
The amount of noise increases from the first to the last
collection. The collections originally come in the form
of two sets (training and testing set) as follows: m-db-s-
0 (4824 4816), m-db-s-1 (4818, 4814), m-db-s-2 (4820,
4809), and m-db-s-3 (4821, 4809).

• Content-and-structure (CAS) collection: This collection
is called m-db-cs-1 and consists of 2415 training and
2410 testing documents. Both training and testing sets
are reasonably large and therefore sufficient to adopt
the two standard evaluation stages, training and testing,
separately.

To answer the questions formulated earlier, 3 sets of ex-
periments are run. The first two deal with the structure only
setting, while the last one is concerned with the content-and-
structure setting. A comparison of our results against some
available results from other authors is shortly highlighted at
the end of this section.

In all experiments, we will rely on the classification accu-
racy is defined as:

Accuracy =
# correctly classified testing docs

# testing docs
(10)

A. Experiment I : How Does k Affect the Accuracy?

As explained in Sec. V, the size of the neighborhood (k) is
a key parameter in the k-NN algorithm. Therefore, one aspect
to look at is to check the effect of k on the accuracy. For this
purpose, we will experiment the values: 3, 5, 7, 9, 15, and
21. Note that only the SO collections are used and, due to
time constraints, only a proportion (10%) of them is selected
randomly and uniformly distributed over the 11 classes to
show the effect of k.

Using Alg. 1 to run k-NN, and setting the required param-
eters: α (Eq. 9), Cdel cost (Eq. 2), Cins cost (Eq. 2), and β
(Eq. 1), to 0.5, 1, 1, 2 (β = Cins + Cdel to avoid permanent
node relabeling) respectively, we obtain the results displayed
in Tab. I.

TABLE I
EFFECT OF k ON THE ACCURACY

Corpus k = 3 k = 5 k = 7 k = 9 k = 15 k = 21

m-db-s-0 0.922 0.920 0.918 0.903 0.892 0.889
m-db-s-1 0.903 0.892 0.891 0.897 0.885 0.866
m-db-s-2 0.874 0.868 0.858 0.849 0.802 0.790
m-db-s-3 0.862 0.868 0.860 0.852 0.825 0.814

The outcome of the experiment is a 3-fold conclusion: (i)
as k increases, the accuracy of the algorithm monotonically
decreases independently of the collection used, (ii) the noise
introduced in the m-db-s-1/2/3 has negatively impacted the
accuracy (as the amount of noise in relation to m-db-s-0
increases, the accuracy decreases), and (iii) the maximum drop



in the accuracy is only 3.3% when raising k. Therefore, we
will continue using the different values of k in the remaining
experiments since these results do not allow to convincingly
consider a particular k-value better than the others.

More interesting, the classifier provide very high accuracy
results, but this remains relative to the amount of documents
used in this experiment.

B. Experiment II - How Does the Training Data Affect the
Accuracy?

Furthermore, k-NN uses the entire set of training samples
as a basis to label the query. Hence, it is clear that the size of
the training set is crucial for the accuracy of the algorithm. To
observe the effect of increasing the size of the training data
set, we split the m-db-s-0 collection into 5 ratios (10%, 30%,
50%, 70%, 100%). These ratios are randomly and uniformly
selected among the whole training data so that every chunk
contains all labels.

Using the same setting described in Sec. VI-A, we obtained
the results shown in Tab. II. Unexpectedly, the size of the
training set did not greatly impact the accuracy of the classifier.
The reason might lie in the inter-document similarity, meaning
that the classes are highly homogeneous. Furthermore, the
accuracy remains in the same range of values (regardless the
value of k) without noticeable fluctuations when increasing
the size of the training data.

TABLE II
EFFECT OF THE TRAINING DATA ON THE ACCURACY

Size k = 3 k = 5 k = 7 k = 9 k = 15 k = 21

10% 0.922 0.920 0.918 0.903 0.892 0.889
30% 0.928 0.925 0.934 0.932 0.930 0.930
50% 0.924 0.929 0.928 0.925 0.925 0.923
70% 0.934 0.933 0.932 0.930 0.930 0.932

100% 0.934 0.934 0.932 0.932 0.929 0.931

C. Experiment III - How Does CAS Setting Affect the Accu-
racy?

To check the effectiveness of our approach taking both the
content and the structure of XML documents into account,
we will use the CAS collection (m-db-cs-1) described earlier
and apply five (5) methods. These are in the following briefly
described:

Meth. Description
BM A Boolean model [1] is applied as in traditional

information retrieval, where documents are rep-
resented as a bag of words and where structure
is neglected

TED SO Details are provided in Sec.III-A and the param-
eters are set as in Sec. VI-A

TED CAS Details are provided in Sec.III-B and the param-
eters are set as in Sec. VI-A

CM match Details are provided in Sec.IV where node labels
are considered in the comparais

CM any Details are provided in Sec.IV where node labels
are ignored

TED CM This is a combination of TED SO and CM any.
Here, the final distance of two documents is α ·
TED SO + (1 − α) · CO any, where α=0.5.

Note that the TED SO method does not use the document contents, but
it is included here for comparison purposes.

These methods are run on 20% of m-db-cs-1 to obtain the
results displayed in Tab. III.

TABLE III
EFFECT OF CAS ON THE ACCURACY

Method k = 3 k = 5 k = 7 k = 9 k = 15 k = 21

BM 0.327 0.352 0.352 0.331 0.335 0.313
TED SO 0.916 0.907 0.895 0.895 0.856 0.860
TED CAS 0.652 0.634 0.640 0.673 0.584 0.558
CM match 0.352 0.360 0.305 0.309 0.296 0.272
CM any 0.130 0.163 0.175 0.160 0.134 0.140
TED CM 0.909 0.907 0.897 0.893 0.862 0.860

Although m-db-cs-1 and m-db-s-0 are different form each
other, the accuracy of TED SO on both collections (when
using the structure only) is nearly the same and exceeds 90%
accuracy. More surprising is the fact that the BM, CM match,
and CM any methods perform worse. Furthermore, comparing
the tree-edit methods TED CAS and TED SO, it is worth
concluding that the content deteriorates the accuracy. Indeed
the difference in the accuracy are significant: 26%, 27%, 25%,
22%, 23%, and 31%. This also true when ignoring entirely
the structure, as with the BM method or when using the
content matrix described in Alg. 2 and relying on CM match
and CM any. The accuracy deterioration in this case is much
worse. More consistent with our expectations, combining
TED SO and CM any, which results in TED CM, allows to
obtain much better results since this combination enables
to consider the content while assuring high classification
accuracy of the TED SO method. The accuracy in this case
remains high.

From these preliminary experiments, one can see that the
structure is a central aspect in the overall similarity between
documents during classification. To further validate this re-
sult additional experiments on other document collections is
certainly needed.

However, at this stage, our work only relies on the MovieDB
collection available at our hand. As long as we are concerned
with the accuracy of the proposed approach, we need to
conduct comparative studies against other results from the



literature. Unfortunately, the only ones found are related to
MovieDB; hence our motivation for using this collection.

D. Comparison

Because we provided a range of methods, it is relevant
to check how these methods compare to the state-of-the-art
methods that have been applied on the same collection. To do
that, we consider two references appearing in the INEX 2005
workshop. The first is by Hagenbuchner et al. [12] who applied
contextual self-organizing maps for structured data (CSOM-
SD) to classify XML documents. Actually, CSOM-SD are
dedicated to clustering rather than to classification. However,
in [12] they have been tested for classification purposes, using
a meassure called “classification performance”. The second is
by Candillier et al. in [4] who applied inductive decision trees
(IDT).

To compare these methods against ours, we need to use
the same evaluation metrics, accuracy, recall, and precision
(at the macro and micro levels) as shown in Tab. IV. Note
that we consider just the best performance rates achieved by
each method.

TABLE IV
CLASSIFICATION COMPARISON FOR m-db-s-0

Approach Accuracy Micro Macro Micro Macro
Recall Recall Precision Precision

CSOM-SD 0.873 - - - -
IDT - 0.968 0.960 - -
TED CM 0.934 0.934 0.934 0.937 0.911

’-’: means value not available

The results illustrate that TED CM largely outperforms
CSOM-SD in terms of accuracy by a rate difference of 6%.
However, when considering micro and macro-recall, the IDT
approach performs better than TED CM. Unfortunately, recall
without precision is not much telling. The precision values
achieved by TED CM are very encouraging especially when
taking recall values into account.

VII. CONCLUSIONS

This work introduces an XML classification approach based
on k-nearest neighborhood algorithm which relies on edit
distance measures. The originality of the approach comes from
the fact that the edit distance considers both the content and
structure of XML trees. Our initial results indicate that the
proposed approach is very promising on both tasks: ’structure
only’ and ’content and structure’. Our finding articulates
around the fact that the structure bears more weight than the
content does. However, a combination of two methods among
the proposed ones allows to tune the weight of both the content
and the structure. Further empirical work using other document
collections is certainly needed.
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