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Abstract

XML has progressively gained importance as a standard for format-
ting online documents. This development is perceived in many applica-
tions such as web services and digital libraries. It is therefore essential
to design classification algorithms for XML documents in order to make
information organization and search more effective.

In this paper, a classification approach for XML documents relying
on instance-based learning ideas is proposed. As of primary interest, the
suggested approach is dedicated to XML classification using the struc-
ture of documents. For the sake of completeness, extensions dealing
with the documents’ content are considered as well. The evaluation, us-
ing INEX’s XML collections, confirmed the relevancy of the structure-
based approach.

Keywords: XML, classification, document structure, document content,
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1 Introduction

The eXtensible Markup Language (XML) has recently emerged as a stan-
dard for developing many web applications dealing with document storage and
retrieval, e.g., digital libraries. XML was mainly developed to achieve an en-
riched representation of documents and more retrieval flexibility when search-
ing information. Systems concerned with such web applications are mainly
augmented traditional information retrieval systems [1].

In contrast to traditional text categorization systems that deal with flat doc-
uments, XML classification systems involve the logical structure of documents



in addition to the raw text (pure content). Often such a structure is consid-
ered only as auxiliary information source useful for document representation.
However, as will be shown later in this paper, it can be a primary source for
document representation and a highly discriminating factor for a classification
system.

Structurally, an XML document has a tree-like representation. A node
in this tree (also known as XML component) is identified by a label, called
tag, and some textual content. From an information search and retrieval per-
spective, the goal is to retrieve only relevant components instead of the whole
documents in response to the user queries leading to retrieval precision im-
provement. On the other hand, from a classification perspective, the goal is
to assign XML documents either document-wise or component-wise to prede-
fined classes. The most frequently used scheme is the former one which is also
the subject of the present work.

Classifying XML documents can basically be done in three ways:

(1) using exclusively the textual contents of XML documents as usually
done in traditional text categorization systems,

(2) using exclusively the structure of XML documents, and

(3) using both, the contents, and the structure, in a hybrid manner.

This work is concerned with the latter approach. The aim is to discover
structural and content patterns (characteristics) shared by XML documents of
the same class. These patterns are mainly expressed in terms of their tags (node
labels), contents, and inter-relationship.

Usually, classification is preceded by a training step. In the training phase,
sets of XML documents belonging to each class are used to create representa-
tions of the classes. In the classification phase, new documents are compared
with these representations in order to assign them to one or more classes. How-
ever for XML classification which involves the documents structure, the task
of finding representations is highly difficult and expensive.

To cope with this complexity, an instance-based learning approach is pro-
posed in this paper. This can support document retrieval by automatically la-
beling documents based on their relative similarity to known documents.

Instance-based learning comprises two main classification strategies: case-
based learning and the k-nearest neighborhood algorithm (k-NN) [11]. The
latter is more appropriate for the problem of XML classification. It departs
from the assumption that similar documents should have the same class label.
It uses a test document as a query and fetches the k training documents most



similar to the query. Majority voting is then used to determine the class of the
query.

Classification in the context of information retrieval is closer to the prob-
lem of filtering [1], where there are two classes: relevant and non-relevant.
This means that for a test document (i.e., query), the classification system
predicts its corresponding topic (class = relevant). The other topics (class =
non-relevant) are not of interest. Due to this relationship between information
retrieval and classification, instance-based classifiers and in particular k-NN
have been chosen. Quite typical and interesting such classifiers allow both,
to perform classification, and to retrieve documents in a straightforward way.
Other classifiers learn just the representation of classes, therefore no direct re-
trieval can be performed. k-NN, on the other hand, assumes that documents
are entirely available and their classes are not encoded using some external
representation (e.g., weights in neural networks).

Particularly important for the k-NN application is the distance which plays
a central role in performing the classification. This importance becomes more
crucial when the data objects to be classified are structured (i.e., objects are
not merely a vector of values) as in the case of XML document classification
where objects have the structure of trees. In this work, the distance is expressed
in terms of a transformation cost that is required to equate two documents con-
sidering their structural and textual features. In other terms, such a distance
measure needs to involve editing mechanisms, hence the choice of an edit dis-
tance. It corresponds to the minimum cost required to transform one document
tree into another, taking content and structure into account. To the best of our
knowledge, no previous work has used edit distance such that the content of
an XML tree is also considered.

The rest of the paper is organized as follows. Section 2 reviews related
work on XML document classification. Section3 explains the classification
with two alternative approaches to compute the distance. In Sec. 3.1, the edit
distance algorithm is discussed with respect to the content and structure be-
fore introducing a more content-dominated approach in Sec. 3.2. In Sec. 3.3
the k-NN algorithm is briefly explained. Section 4 discusses the experimental
evaluation of the approaches before concluding.

2 Related Work

Although classification has been widely discussed in the framework of tra-
ditional text categorization where documents are flat, it has not yet attracted
enough attention in the framework of structured documents. In the following,



some of the research work dedicated to XML document classification is briefly
summarized.

Denoyer and Gallinari [9] proposed a classification approach that aims at
using both, structure and content, to classify XML documents. It relies on a
generative Bayesian classifier. An XML document is represented in the con-
ventional tree-like form of a directed acyclic graph, where each node of the
graph represents an XML component and each edge represents a parental rela-
tionship between the nodes. The generative model assumes that there are two
types of belief, structural and textual, which are combined to get one single ev-
idence about a document assignment to classes as suggested by the following
formula:

P(doc|θ) = P(stru|θ) × P(cont|stru, θ)

where θ is a set of model parameters, doc, stru, and cont designate document,
structure, and content respectively. The quantities P(stru|θ) and P(cont|stru, θ)
are computed via a belief network as follows:

P(stru|θ) =
# tags∏

i=1

P(nodei|ancestor(nodei))

P(cont|stru, θ) =
# terms∏

i=1

P(termi|node j, θ)

where the former considers the parental relationship between nodes and the
latter the content (index terms) of nodes. During the training phase, the param-
eters of the generative model are learned using the Expectation-Maximization
method. Unseen XML documents are assigned to the class with the highest
probability P(doc|classk).

Bratko and Filipic̈ [3] describe a similar approach to that described in [9].
Their method, however, is less general, since it assumes that all documents
have the same structure across all classes. According to this method, docu-
ments are broken down into components, each of which contains either struc-
tured data or non-structured textual data. Let d j, ck, sl, and ti designate respec-
tively a document j, a class k, a component l, and a term i, the total probability
of a document is the product of the individual component probabilities:

P(d j|ck) =
∏
sl∈d j

∏
ti∈sl

Psl(ti|ck) f j(tis)

where f j(tis) indicates the word frequency of term i in the sth component of
document j. The first product is over all structural components sl that are



present in the document d j. The probability Psl is obtained for each document
component. From this, it is clear that each document is represented by a set
of feature vectors, one for each component, so that word frequency f j(tis) is
maintained on a per-component basis.

Zaki and Aggarwal [24] developed a classifier they called XRules. XRules
is structure-oriented and aims at discovering a set of structural rules that de-
fine the individual classes. Basically, these rules, reflecting regular structural
patterns of each class, are learned during the training phase. It is based on
the assumption that the presence of a particular structural pattern in an XML
document is related to the likelihood of its belonging to a particular class. Dur-
ing classification, for a given new document, the relevant rules are identified
and certain statistics from all matching rules are combined to predict the most
likely class for that document.

The other aspect which is important for the present work is tree edit dis-
tance. Work on classification of structured data frequently relies on edit dis-
tance to measure the dissimilarity between graphs/trees [17]. An edit dis-
tance algorithm computes the minimum cost of transforming one tree into
another, where each elementary transformation (e.g., insert, delete, alter) is
associated with a certain cost. In the domain of XML classification, usually
XML peculiarities such as tags, parent-child relationships, root-leaf XPaths,
arity of nodes, etc. [26, 4] are used as descriptive features. Different algo-
rithms have been proposed to compute the edit distance between such trees
[7, 8, 25, 20, 16]. Most of them use dynamic programming techniques as
initially described in [14] in order to find the cheapest sequence of transforma-
tions, called delta script or edit script [7] which can be formulated as:

dist(T1,T2) = min
j
{s j} (1)

s j =

L j∑
i

t( j)
i

where s j is an overall cost of a script j (of length L j), and t( j)
i is the cost of a

transformation i, part of the script j.
The main difference among the various edit distance measures rests in the

set of edit operations allowed and their associated costs. Early work [19] con-
sidered insert and delete of leaf nodes, and node relabelling of any node. Ex-
tensions were then proposed to allow insertion and deletion of nodes anywhere
in the tree [21, 22, 20].

In general the problem of finding the edit distance between two trees is
NP-hard [15, 2]. The work described in [25] and [7] intends to find an efficient



algorithm for the reduced problem of ordered/binary trees, in which a left-to-
right order among siblings is applied. Chawathe et al. [7] first applied the same
edit operations (delete, insert, relabel) and restrictions as used by Selkow [19]
to detect differences in structured documents. In subsequent works this ap-
proach is extended to cover also move operations [6]. In [5] operations for
copying and gluing of subtrees were added.

Zhang and Shasha [25] provide a fast algorithm to calculate the edit dis-
tance between ordered labelled trees. The minimum costs of mapping all de-
scendants of a node is computed in advance, using the notion of keyroots. Key-
roots of a tree are defined as the set of all first-level children having left siblings
plus the root node itself. Computing the keyroots of a tree in advance applies
the concepts of tree distance and forest distance. The tree distance is calculated
as the distance between two trees without considering the context of ancestors
and/or siblings. The forest distance instead uses the tree distance plus takes
ancestor and sibling relations into account. To get the minimum transforma-
tion cost of two trees, the minimum cost mapping from all keyroots amongst
the children and the cost of the leftmost child (forest distance of its rightmost
child) is needed. The algorithm then proceeds from the leaf nodes up to the
root node in a postorder traversal.

Further edit distance methods dedicated to XML documents can be found
in the literature related to structural mapping, e.g., change detection [8]. A
good overview of existing algorithms for change detection can be found in [17].

3 XML Classification

In k-NN, the most important phase is the deployment phase. Each new
unknown document can be seen as a query which will be used to fetch the k
most similar neighbors. Relying on (weighted) majority voting, the new doc-
ument can be flagged with the label of the winning class. Clearly, similarity
plays a central role in k-NN. As introduced in Sec. 1, the distance (or equiv-
alently the similarity) used in this work is the tree edit distance (TED) due to
the structure of XML documents. In the following, the technical formulation
of TED is provided. First a structure-oriented TED is described before extend-
ing it to include document’s content as well (content- and structure-oriented).
A third, component-based variant (CM) is suggested. There, structure is con-
sidered only indirectly. Hence, more importance is given to content. Once an
appropriate distance metric is fully defined, the application of k-NN becomes
straightforward as will be shown hereafter.



3.1 Tree Matching via Edit Distance

The matching mechanism used dwells on the algorithm proposed by Nier-
man and Jagadish [16] which relies on dynamic programming to align a source
tree with a target tree. Whilst this algorithm is originally structure-oriented, in
this work it is further enriched and generalized to deal also with the documents’
content. In a nutshell, the algorithm considers:

i. simplified edit operations, and

ii. the content attached to XML nodes

This results in a hybrid distance measure that operates on augmented trees with
textual contents. Full descriptions are given in the following two subsections.

3.1.1 Structure Matching

To formulate the projected distance, some definitions of the basic concepts
are introduced.

Definition 1 (Tree) A tree is defined as T = (N, E) where N is the set of nodes
and E the set of edges that indicate the parental relationship between nodes.
A node n ∈ N is associated with a label λ(n), a content γ(n), a parent node
p ∈ N, and a set of child nodes, ch(n) ⊆ N. If n has no content, γ(n) is empty
(null). The root node, root(T ) ∈ N, has no parent node, a child node having no
descendant (ch(n) = ∅) is called leaf. The child nodes of n are uniquely iden-
tified as n1, n2, . . . , nk, where k is the degree of n denoted as deg(n). Further,
|T | = |N | represents the total number of nodes in the tree T .

Definition 2 (Ordered Tree) An ordered tree T = (N, E) is defined as a rooted
tree, where a left-to-right order among the child nodes is set. The subtrees of
T are identified as the trees whose root nodes are the child nodes of root(T ),
denoted as T 1,T 2, . . . ,T k (k = deg(root(T ))).

Based on these definitions, the following basic edit operations together
with their corresponding costs are defined:

Definition 3 (Insert operation) Given a tree T = (N, E) and a node p ∈ N, a
leaf node n can be inserted into T as the ith child of the node p ∈ N using the
operation ins(T,n,p,i). The cost associated with this operation is Cins(T, n, p).

Definition 4 (Delete operation) Given a tree T = (N, E) and a leaf node n ∈
N placed as the ith child of a node p, the node n can be removed using the
operation del(T,p,i). The cost of deletion is Cdel(T, n, p).



Definition 5 (Alter operation) Given two nodes n1 and n2 with labels λ(n1)
and λ(n2). The label of n1 can be replaced with the label of n2 using the op-
eration alt(n1, n2) (≡ λ(n1)← λ(n2)). The cost associated with this operation,
Calt(n1, n2), is defined as:

Calt(n1, n2) =

0 if λ(n1) = λ(n2)
β (∈ R+) otherwise

(2)

These operations are associated with a fixed cost and provided as parame-
ters to the routine for calculating the distance. Quite appealing, if Cins(T, n, p) =
Cdel(T, n, p), the edit distance measure becomes symmetric. Note that one can
parameterize the costs of inserting, deleting, and altering. This seems reason-
able for taking into account additional information such as a node’s depth in
the document tree or semantic closeness between tags (i.e., title and subtitle in
papers).

The operations which are defined on leaf nodes can be generalized to op-
erations on inner nodes, where an inner node is the root of a subtree. Con-
sequently, the cost of applying an operation on an inner node is recursively
computed by summing up the costs of manipulating its descendants. Hence,
the following definitions of the cumulative costs are given:

Definition 6 (Recursive insert) The insertion of a whole subtree S into a given
tree T is done recursively using subtree insert (Def. 3).

Definition 7 (Recursive delete) The deletion of a whole subtree S of a given
tree T is done recursively using subtree delete (Def. 4).

Definition 8 (Subtree insert/delete) The cumulative cost of inserting (resp.
deleting) a subtree S at node p from tree T is CinsCum(T, S , p) (resp. CdelCum(T,
S , p)) and computed as follows:


CinsCum(T, S , p) = Cins(T, root(S ), p)

+
∑

CinsCum(T, S j, root(S ))
CdelCum(T, S , p) =

∑
CdelCum(T, S j, root(S ))

+Cdel(T, root(S ), p)

(3)

In other words, at each node of the subtree S of the destination (resp.
source) tree T2 (resp. T1), the cost of the recursive insert (resp. delete) opera-
tion is calculated by summing the cost of inserting (resp. deleting) the single
node root(S ) with the cumulative cost of inserting (resp. deleting) each of its
children S j.



Having introduced some required variables, the edit distance between two
trees T1 and T2 is computed using Alg. 1. For the sake of reference, let this
method of computing the dissimilarity be called TED_SO as abbreviation for
tree edit distance using structure only.

Based on dynamic programming, this algorithm constructs distMat, a
(deg(root(T1)) + 1) × (deg(root(T2)) + 1) matrix of distance values between
the nodes of the two trees.

The details of the algorithm are given as follows: First (line 4), the al-
gorithm compares the root nodes of T1 and T2. The alter operation loads
the value of β into cell distMat[0][0] if relabeling is necessary. Otherwise,
distMat[0][0] will be initialized with "0". Then, as seen in lines 6 to 8 and
9 to 11, the algorithm computes the distance values of potentially inserting or
deleting all nodes given the roots of two trees. These values serve to trigger
the dynamic computation of cumulative adaptation costs, where each child of
T1 is recursively compared to each child of T2. Thus, each cell distMat[i][ j]
(i > 0 and j > 0) is assigned a cost that is computed in the following way,
using the content of its neighboring three cells:

• the content of the upper left neighbor, distMat[i − 1][ j − 1], is added
to the distance between the subtrees rooted at nodes ni and n j (i.e., T i

1
and T j

2) (line 14). This case corresponds to a match between node ni and
node n j.

• the content of the left neighbor, distMat[i][ j− 1], is added to the cost of
inserting a subtree T j

2 to the source tree (line 15). This case corresponds
to an insertion of a subtree whose root is n j.

• the content of the upper neighbor, distMat[i − 1][ j], is added to the
cost of removing a subtree T i

1 from the source tree (line 16). This case
corresponds to a removal of an obsolete subtree whose root is ni.

The minimum cost of these three alternatives is retained and stored in
distMat[i][ j].

Fig. 1 depicts the process of cost computation when comparing two trees
T1 and T2 (for completeness purpose content is also shown). Gray blocks
indicate the nodes which are involved. Initially, the distance matrix contains
the cost of altering the root nodes (if needed). The first row (resp. column) is
filled by the cumulative costs of inserting (resp. deleting) every single node.
All remaining cells are then computed as the minimum sum of previous costs
and that of the current transformation represented as arrows in the figure. In
order to match the inner nodes D in both trees, a further recursive call is carried



Algorithm 1 Tree Edit Distance algorithm
1: procedure TD(T1,T2)
2: int M = deg(root(T1))
3: int N = deg(root(T2))
4: int[][] distMat = new int[0..M][0..N]
5: distMat[0][0] = calt(root(T1), root(T2))
6: for j = 1 to N do
7: distMat[0][j] = distMat[0][j-1] + CinsCum(T2,T

j
2, root(T2))

8: end for
9: for i = 1 to M do

10: distMat[i][0] = distMat[i-1][0] + CdelCum(T1,T i
1, root(T1))

11: end for
12: for i = 1 to M do
13: for j = 1 to N do
14: distMat[i][j] = min{
15: distMat[i-1][j-1] + dist(T i

1,T
j

2),
16: distMat[i][j-1] + CinsCum(T2,T

j
2, root(T2)),

17: distMat[i-1][j] + CdelCum(T1,T i
1, root(T1))

18: }
19: end for
20: end for
21: return distMat[M][N]
22: end procedure

out. The process terminates with the overall result (along a path) located in the
bottom right corner.

The original algorithm proposed by Nierman and Jagadish [16] outputs
only the edit distance between two trees. There is no way to reconstruct the
optimal sequence of edit operations that led to the obtained final edit distance.
To overcome that, all possible edit scripts that correspond to the minimal dis-
tance between the two trees at hand have to be memorized. In this context an
edit script is defined as follows:

Definition 9 (Edit Script) An edit script δ is an ordered sequence of edit op-
erations that transform T1 into T2. In general, there exist an infinite number
δ1, δ2, . . . , δm of edit scripts that correctly transform T1 into T2.

Definition 10 (Minimal Edit Script) Let δ1, δ2, . . . , δm be a set of correct edit
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Figure 1: Tree edit distance algorithm matrix (assuming Cins = Cdel = 1 for any leaf
node)

scripts transforming T1 in T2. A minimal edit script is then defined as:

Mink=1..m{δ
k} = δi ⇐⇒ ∀δ j | i , j,

dist(T1,T2)δ
i
≤ dist(T1,T2)δ

j (4)

where dist(T1,T2)δ
j

indicates the distance between T1 and T2 obtained after
applying the script δ j. Note that there might be more than one minimal edit
script for a pair of trees.

As already proposed by Barnard et al.[2] the algorithm of Nierman and
Jagadish can be extended to keep track of the minimal edit scripts. Instead
of having distMat storing only cumulated editing costs, an additional entry
in the matrix keeps track of the corresponding minimal edit scripts. After
the algorithm finishes, distMat[deg(T1)][deg(T2)] contains the minimal edit
distance and the set of minimal edit scripts.

3.1.2 Content and Structure Matching

The second type of distance required to complete the computation of tree
edit distance is the content-based distance. It is referred to as TED_CAS rep-
resenting tree edit distance using content and structure. To define it, we still
rely on Alg. 1. However the previously used cost functions have to be redefined
in such a way that instead of fixed costs for node-manipulations the degree of
similarity between the contents attached to the nodes compared is also taken
into account.



With different types of content, different similarity functions seem to be
appropriate. For textual content, various metrics like the standard Boolean
or Vector Space model could be used [1]. In order to compare more complex
contents like tabular, graphical, or pictorial information, other metrics might be
more suitable [1]. Hence, the content matching algorithm is not specific about
the similarity function to be used. Any properly defined content matching
function could be substituted for sim(_, _).

Let sim(γ(n1), γ(n2)) be a similarity function suitable for comparing the
contents of two nodes n1 and n2 such that this similarity measure is normalized
so that it takes values in the unit interval [0,1] (where sim = 0 means no match,
sim = 1 indicates full match, and sim ∈ ]0, 1[ means partial match). The
boundary conditions are defined as:

sim(null, null) = 1 (5)

sim(null, γ(n2)) = sim(γ(n1), null) = 0 (6)

Eq. 5 stipulates that the content-based similarity of two nodes with empty
content is total (i.e., complete match), while Eq. 6 stipulates that content-based
similarity between a node with some non-empty content and a node with empty
content is 0.

The cost functions for inserting and deleting nodes with their contents are
defined as:

CinsCon(n) = 1 − sim(null, γ(n)) = 1 − 0 = 1 (7)

CdelCon(n) = 1 − sim(γ(n), null) = 1 − 0 = 1 (8)

The total cost of altering the content, CaltCon, (Eq. 9) is the sum of the cost
of changing the label Calt(n1, n2) (Eq. 2) and the cost of altering the content
which is expressed as:

CaltCon(n1, n2) = Calt(n1, n2) + ρ ∗ (1 − sim(γ(n1), γ(n2))) (9)

The amount ρ is a cost factor that scales up the dissimilarity of contents
(since sim(γ(n1), γ(n2)) ∈ [0, 1] and calt(n1, n2) can be larger than 1).

Furthermore, we can decide whether the alter operation is cheaper than the
combination of a delete and insert operation. This can be tuned by a user-
specified parameter, α (0 ≤ α < 1). Precisely, if sim(γ(n1), γ(n2)) > α then
CaltCon < (CdelCon+CinsCon) (alter is cheaper) and if sim(γ(n1), γ(n2)) < α then
CaltCon > (CdelCon +CinsCon) (alter is more expensive); otherwise, alter has the



same cost as the sum of a delete operation and an ensuing insert. From these
constraints, the cost factor ρ can be determined as follows:

ρ ∗ (1 − α) = CdelCon(n1) +CinsCon(n2)

ρ =
CdelCon(n1) +CinsCon(n2)

(1 − α)
(10)

Based on these definitions, the following parameter changes have to be
made in Alg. 1: Taking the similarity of content into account Calt(root(T1),
root(T2)) in Alg. 1 (line 4) is substituted for CaltCon(root(T1), root(T2)). Fur-
ther, the subtree insert (resp. delete) operations are redefined to call CinsCon

(resp. CdelCon) instead of Cins (resp. Cdel). The remainder of the algorithm
stays unchanged.

3.2 Component-based Matching

While the focus of TED_CAS just presented has been on explicit consider-
ation of the structure to compare documents, here an alternative, more content-
oriented matching procedure is proposed. It uses the structure of documents
only implicitly by exploiting the component-based view of XML documents.
This method is referred to as CM standing for component-based matching.

Specifically, the idea is to measure the similarity between documents using
only nodes with contents. Indeed, every node in the source tree is compared to
all nodes in the destination tree relying on a content similarity matrix (denoted
as Content Matrix). As this matrix obtains its information only on the basis
of content containing nodes (mostly leaf nodes) of XML trees, the structural
depth of the trees involved is ignored. However, as the comparison will be on
a node per node basis, the fact that XML documents are not flat but structured
and therefore meaningfully arranged containers of information is still consid-
ered.

A cell contMat[i][ j] refers to the degree of similarity between the contents
of the node ni in the source tree and the node n j in the destination tree, i.e.,
contMat[i][ j] = sim(γ(ni), γ(n j)).

One can compute content similarity by either comparing all content con-
tainers or define a two-step process for similarity comparison. In the latter
the labels of the content bearing nodes serve as filter. If the labels of nodes
to be compared are the same, then the contents of these nodes are compared.
Otherwise, similarity is postulated to be 0. The user can determine via a flag
variable, ζ, whether this coarser similarity match should be used. If ζ is set to
true, the similarity of nodes with non-equal labels is set to 0.



Once the content similarity matrix, contMat, is filled, the distance between
the corresponding documents can be computed using an algorithm that tra-
verses that matrix in a single pass. Basically, three edit operations: insert,
delete, and alter are applied. During the computation, these operations are
labelled either as sa f e (certain) or as unsa f e (uncertain) as shown in Alg. 2.
The semantics of this label is that sa f e operations can be performed right away
while in the unsa f e case, application of the operation can involve further treat-
ments (i.e., weighting strategies).

Basically the algorithm proceeds mainly in two steps: (1) computing the
similarities, and (2) marking of nodes according to the edit operations as fol-
lows (item numbers correspond to lines in Alg. 2):

14: If contMat[i][ j] = 1, then a node n1,i and the first node n2, j (minimal
index j) are both marked as sa f e_match with no additional cost.

15: A source node, n1,i, having no matching destination nodes (contMat[i][ j] =
0,∀ j = 1 . . . |dest|) is marked as sa f e_delete. The cumulative cost is in-
creased by the weighted cost of sa f e_delete.

16: A destination node, n2, j, with no corresponding source nodes (contMat[i][ j] =
0,∀i = 1 . . . |source|) is marked as sa f e_insert. The cumulative cost is
increased by the weighted cost of sa f e_insert.

17: An unmarked source node, n1,i, is marked as unsa f e_match along with
one unmarked destination node n2, j, if n2, j is the first node (minimal
index j) fulfilling the condition contMat[i][ j] ≥ α, where α is a user-
specified similarity threshold.

18: Any remaining unmarked source node, n1,i, (contMat[i][ j] < α,∀ j =
1 . . . |dest|) is marked as unsa f e_delete.

19: Any remaining unmarked destination node, n2, j, (contMat[i][ j] < α,∀i =
1 . . . |source|) is marked as unsa f e_insert.

As in the tree edit distance approach, each of the edit operations is associ-
ated with a certain cost. In addition, the labels sa f e and unsa f e can be attached
weights. Since the distance is inversely proportional to similarity, the transfor-
mation costs are calculated using the same formula applied in the tree edit
distance approach taking dist(n1,i, n2, j) = 1 − contMat[i][ j] into account. The
final distance between the documents is the sum of all (weighted) operation
costs on account of the type of marking. As there is no recursive computation,
the computation of the edit script is done in linear time and space.



Algorithm 2 Component-based Matching algorithm
1: procedure CD(T1,T2, ζ)
2: int M = |T1| /*only content nodes*/
3: int N = |T2| /*only content nodes*/
4: float[][] contMat = new float[0..M][0..N]
5: for i = 1 to M do
6: for j = 1 to N do
7: if ζ = true and λ(n1) , λ(n2) then
8: contMat[i][ j] = 0
9: else

10: contMat[i][ j] = sim(γ(n1,i), γ(n2, j))
11: end if
12: end for
13: end for
14:

15: mark sa f e_match
16: mark sa f e_delete
17: mark sa f e_insert
18: mark unsa f e_match
19: mark unsa f e_delete
20: mark unsa f e_insert
21:

22: return
∑

weighted_costs (based on marks)
23: end procedure

Fig. 2 depicts the process of cost computation when comparing two trees
T1 and T2. Again, gray blocks indicate the nodes which are involved. Initially,
the content matrix is filled with the pairwise similarities of all content nodes.
Then, all sa f e transformations are marked, including complete matches (nodes
B, E, and F), inserts (node H) and deletes (node C). Nodes above a given
similarity threshold (node G in both trees) are marked as unsa f e match (inter-
preted as an alter operation). The remaining unmarked nodes of T1 (resp. T2)
are marked as unsa f e deletes (resp. inserts).

It is important to note that one can derive various variants of the CM-
distance:

1. CM_S : where the tree nodes are compared only if they have the same
tag (ζ = true, see Alg. 2)

2. CM_A: where tags are ignored (ζ = f alse)
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Figure 2: Component-based matching algorithm matrix (assuming Cins = Cdel = 1
for any node)

3. TED_CM: corresponding to a combination of TED_SO (Sec. 3.1.1) and
CM_A. Here, the final distance of two documents is computed as fol-
lows: η · T ED_S O + (1 − η) ·CO_any, where η=0.5.

3.3 Overview of k-NN

The k-NN algorithm [11] is based on the assumption that the classifica-
tion attributed to a sample should be most similar to the classification of other
samples that are nearby in the space.

Compared to other learning methods such as probabilistic classifiers, k-NN
does not rely on prior probabilities. Nevertheless, it is known for its effective-
ness [23], though it does have efficiency problems. The main computational
task involves sorting the training samples in order to find the k-nearest neigh-
bors of a given query. The metric to be used for computing the distance is
at the experimenters discretion. In case of XML documents, one of the pro-
posed alternatives for computing the distance between documents (edit dis-
tance or component-based matching) seems promising. The remaining steps
of attributing the most suitable class are straightforward as outlined below.

To use k-NN a collection of N training documents XT = {(x1, y1), (x2, y2),
..., (xN , yN)} is required, where in the context of this work, xi are XML docu-
ments and yi are associated class labels. The elements of this set are used as
reference samples for the k-NN algorithm. To assign a label to an unlabelled
document (query), doc, the algorithm finds those k documents in the reference
samples (labelled documents) that are the closest to it. The label shared by
the majority of these k nearest neighbors is assigned to the query. As k-NN



Algorithm 3 Classification via the k-NN algorithm

Let XL be the set of labeled documents, C the number of classes such that⋃
j X j = XL, j = 1...C

Let XU be the set of unlabeled documents

procedure k-NN(k)
for i = 1 to |XU | do // xi is an unlabeled document

for j = 1 to |XL| do // y j is a labeled document
dist[ j] = sim(xi, y j)

end for
Sort dist[] ascending
Select the first k documents (∈ XL with smallest distance)
Assign xi to the class of the majority among the k documents. Break

ties if more than one winning class exists.
end for

end procedure

depends on the value of k, an appropriate choice of k has to be taken.
Note that k-NN is a lazy learning algorithm because no model needs to be

built a priori. Steps of the classification procedure via k-NN are summarized
in Alg. 3. Once the unlabelled XML document set is assigned class labels, the
classification accuracy can be computed. It measures how often the algorithm’s
labeling decision meets the actual labels of the documents.

4 Evaluation

This section addresses the following aspects: How do different values of
k influence the classification? What is the impact of training size on classifi-
cation performance? How does content and structure matching perform com-
pared to matching based on structure only? All of these questions are discussed
using some real-world XML collections (MovieDB -movie database-) which
were proposed in INEX’05 [12]. Descriptions of the collections can be found
in [10]. Documents of these collections are assigned to 11 classes. Basically,
the XML collections are of two types:

• Structure-only (SO) collections: These contain only the structure of the
XML documents and include 4 collections: m-db-s-0, m-db-s-1, m-db-
s-2, m-db-s-3, where the last 3 collections are noisy versions of the first
one. The amount of noise increases from the first to the last collection.
The collections originally come in the form of two sets (training and



testing sets) as follows: m-db-s-0 (4824, 4816), m-db-s-1 (4818, 4814),
m-db-s-2 (4820, 4809), and m-db-s-3 (4821, 4809).

• Content-and-structure (CAS) collection: This collection is called m-db-
cs-1 and consists of 2415 training and 2410 testing documents. Both
training and testing sets are reasonably large and therefore sufficient to
adopt the two standard evaluation stages, training and testing, separately.

To answer the questions formulated earlier, 3 sets of experiments are run.
The first two deal with the structure-only setting, while the last one is con-
cerned with the content-and-structure setting. A comparison of our results
against some available results from other authors is shortly highlighted at the
end of this section.

In all experiments, the classification accuracy which measures how often
the classifier’s decision meets the actual assignment is used as measure of suc-
cess. Formally it is defined as:

Accuracy =
# correctly classified testing docs

# testing docs
(11)

4.1 Experiment I : How Does k Affect the Accuracy?

As explained in Sec. 3.3, the size of the neighborhood (k) is a key param-
eter in the k-NN algorithm. Therefore, one aspect to look at is to check the
effect of k on the accuracy. For this purpose, the values 3, 5, 7, 9, 15, and 21
were used in the experiments. Note that only the S O collections are used and,
due to time constraints, only a proportion (10%) of them is selected randomly
and uniformly distributed over the 11 classes to show the effect of k.

Table 1: Parameter settings for T ED

α (Eq. 10) Cins cost (Eq. 3) Cdel cost (Eq. 3) β (Eq. 2)

0.5 1.0 1.0 2.0

Using Alg. 1 to run k-NN, and setting the required parameters as given
in Tab. 1 (β = Cins + Cdel to avoid permanent node relabelling), the results
displayed in Tab. 2 are obtained.

The outcome of the experiments lead to the following conclusions: (i) as
k increases, the accuracy of the algorithm monotonically decreases indepen-
dently of the collection used, (ii) the noise introduced in the m-db-s-1/2/3 has



Table 2: Effect of k on the accuracy

Corpus k = 3 k = 5 k = 7 k = 9 k = 15 k = 21

m-db-s-0 0.922 0.920 0.918 0.903 0.892 0.889
m-db-s-1 0.903 0.892 0.891 0.897 0.885 0.866
m-db-s-2 0.874 0.868 0.858 0.849 0.802 0.790
m-db-s-3 0.862 0.868 0.860 0.852 0.825 0.814

negatively impacted the accuracy (as the amount of noise in relation to m-
db-s-0 increases, the accuracy decreases), and (iii) the maximum drop in the
accuracy is only 3.3% when raising k. Therefore, we will continue using the
different values of k in the remaining experiments since these results do not
allow to convincingly consider a particular k-value better than the others.

More interesting, the classifier provides very high accuracy results, but this
remains relative to the amount of documents used in this experiment.

4.2 Experiment II - How Does the Training Data Affect the Accu-
racy?

Furthermore, k-NN uses the entire set of training samples as a basis to label
the query. Hence, it is clear that the magnitude of the training set is crucial for
the accuracy of the algorithm. To observe the effect of the size of the training
data set, 5 subsets are derived from the m-db-s-0 collection. They correspond
to 10%, 30%, 50%, 70%, 100% of the available training data set. The proper
subsets were constructed by random and uniform selection from the whole
training data set ensuring that every subset contains all available labels.

Table 3: Effect of the training data on the accuracy

Size k = 3 k = 5 k = 7 k = 9 k = 15 k = 21

10% 0.922 0.920 0.918 0.903 0.892 0.889
30% 0.928 0.925 0.934 0.932 0.930 0.930
50% 0.924 0.929 0.928 0.925 0.925 0.923
70% 0.934 0.933 0.932 0.930 0.930 0.932
100% 0.934 0.934 0.932 0.932 0.929 0.931



Using the same setting described in Sec. 4.1, the results shown in Tab. 3
were obtained. Unexpectedly, the size of the training set did not greatly im-
pact the accuracy of the classifier. The reason might lie in the inter-document
similarity, meaning that the classes are highly homogeneous. Furthermore,
the accuracy remains in the same range of values (regardless the value of k)
without noticeable fluctuations when increasing the size of the training data.

4.3 Experiment III - How Does CAS Setting Affect the Accuracy?

To check the effectiveness of the proposed approach taking both, the con-
tent and the structure of XML documents into account, five methods are ap-
plied on the CAS collection (m-db-cs-1) described earlier. These are briefly
shown in the following:

Method Description
BM A Boolean model [1] is applied as in traditional infor-

mation retrieval where documents are represented as a
bag of words. Specifically, a document is a vector of
binary values; such that a value is 0 if the correspond-
ing term is absent and 1 if the corresponding term is
present in the document. The similarity between two
document can be measured using the Jaccard coeffi-
cient which expresses the degree of equality (size of
common terms divided by the union of exiting terms
in both documents). Clearly, according to this method,
the structure of documents is neglected.

TED_SO Sec.3.1.1, parameters are set as in Sec. 4.1
TED_CAS Sec.3.1.1, parameters are set as in Sec. 4.1
CM_S Sec.3.2
CM_A Sec.3.2
TED_CM Sec.3.2

These methods are run on 20% of m-db-cs-1 to obtain the results displayed
in Tab. 4. It is worth noting that except in the TED_SO variant, the Jaccard
coefficient [1] is used to compare the content of two components.

Although m-db-cs-1 and m-db-s-0 are different form each other, the ac-
curacy of T ED_S O on both collections (when using the structure-only) is
nearly the same and exceeds 90% accuracy. More surprising is the fact that



Table 4: Effect of CAS on the accuracy

Method k = 3 k = 5 k = 7 k = 9 k = 15 k = 21

BM 0.327 0.352 0.352 0.331 0.335 0.313
TED_SO 0.916 0.907 0.895 0.895 0.856 0.860
TED_CAS 0.652 0.634 0.640 0.673 0.584 0.558
CM_S 0.352 0.360 0.305 0.309 0.296 0.272
CM_A 0.130 0.163 0.175 0.160 0.134 0.140
TED_CM 0.909 0.907 0.897 0.893 0.862 0.860

BM, CM_S, and CM_A perform so markedly worse. Furthermore, compar-
ing the edit distance methods TED_CAS and TED_SO, it is worth concluding
that including content deteriorates the accuracy. Indeed the difference in the
accuracy is significant: 26%, 27%, 25%, 22%, 23%, and 31%. This is also
true when entirely ignoring the structure, as with the BM method or when us-
ing the component-based matching described in Alg. 2 and relying on CM_S
and CM_A. The accuracy deterioration in this case is much worse. More con-
sistent with our expectations, combining TED_SO and CM_A, which results
in TED_CM, allows to obtain much better results since this combination en-
ables to consider the content while assuring high classification accuracy of the
TED_SO method. The accuracy in this case remains high.

From these preliminary experiments, one can see that structure is a central
aspect in the overall similarity between XML documents during classification.
The fact that content did not contribute in improving the classification accuracy
is counter-intuitive. However the results obtained are consistent with those ob-
tained by XRules explored in [24] already mentioned in Sec. 2. XRules, which
is entirely structure-oriented, has been evaluated on a real data set (constructed
from Log reports) and a synthetic data set (constructed by a data generation
program simulating website browsing behaviour). This classifier has then been
compared against a traditional purely content-oriented vector space classifier
(IRC) and a classifier based on associations (CBA). The empirical evaluation
has shown that XRules outperforms both classifiers. Its accuracy is 2-4 % bet-
ter when evaluated on the real data set and about 20% better on the synthetic
data set.

A further reason for having TED_SO better than TED_CAS might be due
the fact that the content in the MovieDB collections is relatively poor and not
discriminative. Therefore, to further validate this result, additional experi-



ments on other document collections are certainly needed. However, at this
stage, our work only relies on the MovieDB collections available at our hand.
As long as we are concerned with the accuracy of the proposed approach, we
need to conduct comparative studies against other results from the literature.
Unfortunately, the only ones found are related to MovieDB; hence our motiva-
tion for using this collection.

4.4 Comparison

Because we provided a range of methods, it is relevant to check how these
methods compare to the state-of-the-art methods that have been applied on
the same collections. To do that, two references appearing in the INEX 2005
workshop are considered. The first is by Hagenbuchner et al. [13] who ap-
plied contextual self-organizing maps for structured data (CSOM-SD) in order
to classify XML documents. Actually, CSOM-SD is dedicated to clustering
rather than to classification. However in [13] they have been tested for clas-
sification purposes, using a measure called “classification performance”. The
second is by Candillier et al. in [4] who applied inductive decision trees (IDT).

To compare these methods against those proposed in this paper, one has to
use the same evaluation metrics, accuracy, recall, and precision (at the macro
and micro levels). Note that macro-averaging computes the recall and preci-
sion values for each class separately which are then averaged over all classes.
Clearly, the contribution of all classes is the same (each class has the same
weight). On the other hand, micro-averaging computes recall and precision
for all documents without distinguishing between classes. Here, each docu-
ment has the same weight or impact on the overall measurement [18].

Moreover, it is important to bear in mind that for the sake of this compari-
son, only the best performance rates achieved by each method are used (since
with the same approach, several variations have been proposed and tested).

The results of the comparison is shown in Tab. 5. These illustrate that
TED_CM largely outperforms CSOM-SD in terms of accuracy by a rate dif-
ference of 6%. However, when considering micro and macro recall, the IDT
approach performs better than TED_CM. Unfortunately, recall without preci-
sion is not much telling. The precision values achieved by TED_CM are very
encouraging especially when taking recall values into account.



Table 5: Classification Comparison for m-db-s-0

Approach Accuracy Micro Macro Micro Macro
Recall Recall Precision Precision

CSOM-SD 0.873 - - - -
IDT - 0.968 0.960 - -
TED_CM 0.934 0.934 0.934 0.937 0.911

’-’: means value not available

5 Conclusions

This work introduces a classification approach for XML documents based
on the k-nearest neighborhood algorithm. For measuring the distance between
artefacts, cost functions of various tree editing operations have been proposed.
The originality of the approach comes from the fact that these distance metrics
considers both, the content and structure, of XML trees. An initial evaluation
indicates that this approach is very promising in the variations: ’structure-only’
and ’content-and-structure’. The results also indicate that with XML docu-
ments structure bears more significance than the content does. This, on first
glance surprising result is in accordance with some similar work reported in
the literature. However the combination of edit distance and component-based
matching offers the possibility to tune the weight of both, content and structure.

Although k-NN requires much time, its application is motivated by the
possibility to use it for document organization via the classification and in-
formation retrieval as well. Its performance can be improved by reducing the
number of comparisons. A systematic way to do this is by clustering labelled
XML documents before applying k-NN. This will allow also to deal with noise.
Further aspects can also be improved; for instance, instead of pure counts of
classes (in majority voting), one can use weighted similarity as a score. From
the XML perspective, it is still worth looking at the way the content is repre-
sented and the way it is combined with structure to form a reflective represen-
tation of XML documents.
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